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Current Research

We are continuing the work begun in Years 1 (1991 - 1992) and 2 (1992 - 1993) and
reported in our earlier progress reports this year. The thrust of our group centinues to be
the study of on-line fully adaptive algorithms for data compression with real-time parallel
implementations. Such algorithms are key to NASA applications where high speed is
required and diverse data sets need to be handled.

Here we summarize what’s new from what was reported last year.



e Image Compression: A paper on our basic single-pass adaptive VQ with variable size
and shaped codebook entries has appeared in the Proceedings of the IEEE. A new paper
was presented at the 1994 IEEE Data Compression Conference that describes the use
of KD-trees for a fast serial implementation that can run on a UNIX workstation. In
addition, this paper describes a number of key improvements to the basic algorithm.
The Computer Science Department at Brandeis University has recently received a 1
million dollar grant from the NSF for the purchase of parallel computing equipment;
part of these funds have already been used to purchase a 4,096 processor MASS-PAR
machine; the remainder was used to purchase a 16-node SGI Challenge machine. We
have been conducting experiments with this machine on practical sub-linear parallel
implementations of the algorithm.

o Video Compression: Our work on the basic adaptive displacement estimation algo-
rithm that tracks variable shaped groups of pixels from frame to frame has appeared
in the same issue of the Proceedings of the IEEFE as our work on adaptive image com-
pression. In addition, we have submitted for journal publication new work on the
integration of this algorithm into a complete video and image sequence compression

system. We are in the process of compiling extensive experimental results with the
system.

o Parallel Algorithms: Our work on sublinear algorithms for parallel text compression
has been submitted for journal publication. WWe have conducted experiments with our
new approach to sub-linear text compression that closely approximates optimal com-
pression but is much more practical to implement. Using an extremely simple parallel
model (a linear array where processors can only talk to adjacent neighbors), we have
achieved poly-log time and extremely close approximation to optimal compression. As
parallel computers become more common, algorithms such as this will provide prac-
tical ways to fully utilize the power of these machine in NASA applications involving
large amounts of data.

s Error Propagation: A paper on our basic error resilient algorithm has been submit-
ted for journal publication. We are continuing our investigation of “error resilient”
systems, and their application to lossy systems.

Appendix: As indicated above, the two papers that recently appeared in the Proceedings
of the IEEE give good summaries of the key work performed under this contract. Attached
are copies of these papers.



Improved Techniques for Single-Pass

Adaptive Vector Quantization

CORNEL CONSTANTINESCU AND JAMES A. STORER

Invited Paper

Consiantinescu and Siorer [4], [5] present a new single-pass
adaptive vecior quaniization algorithm that learns a codebook of
variable size and shape eniries; 1hey present experimenis on G sel
of test images showing that with no iraining or prior knowledge
of the daia. for a given fideliry, the compression ackieved npically
ecuals or exceeds that of the JPEG standard. This paper presenis
improvements in speed (by emploving K-D 1rees), simplicioy of
codebook eniries, and visuel qualiry with no loss in eitfer :he
amount of compression or the SNR as compared 10 the originel
Jull-search version.

I. INTRODUCTION

Vector quantization is a powerful approach for lossy
image compression when a good codebook is supplied. but
the need 1o have this codebook supplied in advance can
be a significant cdrawback. Consiantinescu and Storer {4],
{5] show how 10 combine the zbility of lossless adzptive
dictionary methods 10 process data in a single pass with
the ability of vecior quantization accurately 1o zpproximate
data. For a given overall fidelity of the decompressed image,
the compression achieved by this new approach rypically
equals or exceeds the JPEG siandard. In addition, it ofie
outperforms traditional trained VQ (even in the best case,
where the codebook is specifically trained for the type of
data being compressed) while at the same 1ume having a
number of additional advantages: First, it is a singie-pass
adaptive algorithm (requiring no codebook to be provided
in advance). Second, one can provide precise guarantees
in advance on the distortion of any ! x [ subblock of the
image (whereas trained VQ simply finds the best meaich
1o an available codebook). Third, with a fixed codebock
size, one can continuously vary the fidelity/compression
tradeoff (whereas trained VQ rypically achieves different
tradeoffs by employing multiple codebooks). Our zlgorithm
also enjovs some of the advantages of trained VQ, such as
fast table-lookup decoding. )
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This pzper presents improvements in spezed, simplicity
of codebook entries, and visual quality with no loss in
either the amount of compression or the signal-10-noise ratio
(SNR) as compared to the original full-search version. Sec-
tion 11 reviews the basic single-pass adaptive VQ zlgonithm
presented in Consizntinescu and Storer [4]. [5]). Seciion
111 presents a k-d tree implementation of the dictionary
that greatly improves the speed of serial implemenizations
with no loss in either the amount of compression or the
SNR zs compared 10 the original full search version. In
fact, due 10 a minor improvement in the basic algorithm
(see the end of Section 1I), the experimenis reporied here
improve upon what is reported in Constzntinescu and Storer
[4), [3]). Section IV presents a new lezming heuristic that
employs only square-shaped entries. Section V presents a
new method for distortion compuiation that improves visuzl
quality without any significant sacrifice in the SNR. Section
V1 mentions some current areas of research.

1. THE BASIC SINGLE-PASS ADAPTIVE VQ ALGORITHM

In this section we review the work presented in [4},
[5). As mentioned in the Introduction, one can view this
approach as combining ideas from adaptive lossless com-
pression and from vector quantization.

With lossless adaprive dictionary merhods, a local dictio-
nary D is vsed 10 store a constantly changing set of saings.
Daia are compressed by replacing substrings of the input
stream that also occur in D by the corresponding index into
D; we refer 10 such indices as pointers. The encoding and

. decoding algorithms work in lockstep to maintain identical

copies of D (which is constanily changing). The encoder
uses a march heuristic 10 find a match between the incoming
characters of the input stream and the dictionary, removes
these characters from the input stream, transmits the index
of the corresponding dictionary entry, and updaies the
dictionary with an updare heurisiic that depends on the
current contents of the dictionary and the match that was
just found. If there is not enough room left in the dictionary.,
a deletion heuristic is used 10 delete an existing entry. For
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Fig. 1. (2) ChestCAT original. (b) ChesiCAT map. {c) ChestCAT dictionary.
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Fig. 2. On-line adaptive Q.

an overview on adaptive lossless compression, see the book
by Storer [14].

Vecior quantization is a lossy method that compresses
an image by replacing subblocks by indices into 2 diciio-
nary of subblocks. Tradiionally, the subblocks are 2}l the
same size and shape and the dictionary musl be computed
in advance by “iraining” on sample data. Not only can
training be computationaily expensive. bul “full-search”
encoding that is guaranieed 1o find the closest vector
in the dictionary can also be very time-consuming. In
pracuice. tree-structured dictionaries are often used. Lin [10]
studies the performance—complexity tradeoffs for vector
quantizaijon. See Gersho and Gray (9] for an introduction
1o vector quaniization and references 1o the literature.

The basic single-pass adaptive VQ algonthm presenied
in [4]. [5) is depicied in Fig. 2, which is followed by
Algorithms la and 1b. the Lossy Generic Encoding and
Decoding Algorithms for on-line adapiive vector quanti-
zation. Fig. 1 illustraies the algorithms by showing for
a CAT-scan chest imzge (Fig. 1(2)), a map of how the
compressor covers the image with rectangles (Fig. 1(b)),
and a portion of the dictionary (Fig. 1(c)) about half-
way through the compression process. The operation of the
generic algorithms is guided by the following heuristics:

The Growing Heurisiic: The heuristic selecls one grow-
ina point GP(r.y.g) from the available pool GPP. All

014

1) Initalize the local dictionary D 10 have one enuy for each pixel
of the input ziphabet and the growing points pool (GPP) with one
(or more) growing poInis.

2) Repeat until there 2re no more growing points in GPP:

z) 1Select the next growing point from GPP:}
Use a growing heuristic 10 choose a growing point GP {rom
GPP. :

b) |Ger the best meich block b :)
Use 2 maick heuristic 10 find 2 block b : in D that mzichss
with accepizble fidelity imoge (GP. b :) (the ponion ¢! imezpe
geiermined by GP having the same size as b). Transmil
[og, D17 bits for the index of b ..

¢) {Updecie D ond GFP:)
4068 each of the biocks specified by 2 dicrionary update
hewristic 10 D (f D is full, first use a delerion heurisnc
10 make space)

Algorithm la:  Losey Generic Encoding Algorithm.

1) lnitialize D 2nd GPP by performing Siep 1) of the encoding
zlgorithm.}
2) Repeat uniil there 2re no more growing points in GPP:

2) {Select the nexi growing point from GPP:
Perform Siep 22 of the encoding 2lgonthm 10 obtain GP.
b) |{Gel the best smaich biock i)
Receive [log, D[] bits for ihe index b. Reieve b from D
2nd ouiput b 21 the position deicrmined by GP.
¢) |Update D znd GPP:)
Perform Step Zc of the encoding zlgorithm

Algorithm 1b:  Lossy Generic Decoding Algonithm.

experiments reporied here use the wave heurnistic (a "wave
front™ that goes from the upper left comer down 10 e
Jower right comer). Other examples of growing heuristics
include circular (a “ball” that expands outward from xhc
center), diagonal (a2 successive “thickening” of the mad
dizgonal), and FIFO (first-in Arst-out).

The Maich Heuristic: This heuristic decides what block b
from the dictionary D best matches imageGP (the poruod
of the image of the same shape as b defined by e
currently selected growing point GP). All expenmen
results reporied here use the greedy heuristic (chnose
largest match possible of accepiable quality, an 3MONg
two maiches of equal size, choose the one of best qual:
ity). The parameters that guide the maiching process at-
The disiance measure, we use the standard mcan-.‘qu‘.’t
measure in all experiments. The elemeniary subblock it
I; large maiches can be divided into cubblocks of consiant
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Fig. 3. “OneRow + OneCeluma” learning heunistic.

cize | x 1. and then distance is compuied 2s the maximum
distance among the subblocks: this prevents distoriion from
being unacceptable in 2 small poriion of a maich because it
is better than needed in other areas (all experiments reporied
here use | x [ = 4 x 3). The npe of covercge. examples
cf image covering strziegies include Jirst coverage where
the distance is computed only on the uncovered past of
imageGP, last coverzge where the match is computed for
the entire block (except if it fzlls outside the image borders).
and average coverage (used in all experiments reponied
here) where the match is computed for the entire block 2s
for last. but on overlapped areas the resulting value is the
average value between 2l] the values of matches that hzppen
1o cover that pixel. The rhreshold i a real number that
defines the maximum zllowed distance (disioriion) between
imageGP and b.

The Growing Poims Update Heuristic: The growing
points update heurisiic is responsible for generating new
growing points after each new match is made. For all
experiments reporied here, the concave comers of the
partially encoded/decoded image are chosen.

The Dictionary Updare Heurisiic: The dictionary updaie
heuristic adapts the contents of the dictionary D 10 the
part of the image that is curently encoded/decoded. All
experiments reporied here use the OneRow -+ OneColumn
dictionary updaie heuristic, depicted in Fig. 3, that adds
(if possible) two new blocks to the dictionary. constructed
by exiending the previously matched block (or part of it)
vertically and horizontally by one row.

The Delerion Heurisiic: This heuristic maintains the dic-
tionary D so it can have a predefined (consiant) size Doas.
All experiments reported here use the LRU heuristic (delete
the entry that has been least recently used).

Before closing this section, we should report an exper-
imental finding made after the writing of Constantinescu
angd Storer [4). Although experiments have shown that the
basic algorithm is robust over a wide choice of heuristics,
2llowing growth in only one quadrant (as long as possible)
1vpically improves compression (by about 10% on average)

tor the same SNR. Because wave growing can "6l the
entire image and still satisfy the above restriction. this pzper
has switched from circular (used in Constantinescu and
Siorer [4]) 10 wave.

1. X — D TREE DICTIONARY DATA STRUCTURE

The basic algerithm presented in Constantinescu and
Storer [4]. [5) encodes with simple linear search 1o find
matches, and is very slow if implemenied on a standard se-
rizl architecture (decompression is essentially table-lookup,
and is quite fast). In this section we present a new algorithm
besed on k—d trees ihat reduces the search time from
minutes or even hours to a few seconds on a UNIX
workstation.

If we consider ezch dictionary block b with &y = my xny
pixels 2s a point in a ky-dimensional space, the problem is
10 find the closest point (best block) 10 a given point (image
zrea imageGP) from a set of poinis (dictionary of blocks);
ihat is. a nearest neighbor search problem (e.g.. Preparata
[13). Dasarzihy [6)). However. the problem has several
nontrivial peculiarities: First. the dictionary blocks have
varigble dimension (ki) and variable shape (mp and my
czn have arbitrary values). Second, the dictionary maintzins
a dvnamic set of blocks: in addition 10 search we need
insertions and deletions. And third, the “besi™ block is
defined by a maich heuristic that may use a variety of
disiortion measures that work over a variety of rectangle
cizes (and there is always a perfect maich 1o the unit
size). Tvpically, nearest neighbor algorithms perform ume-
consuming preprocessing in order 10 have fast processing
time. This works well if the set of points is staric (does not
change during processing). However, in our case the set of
points (dictionary) consists of the alphabet at the beginning
of encoding. and changes during encoding, on average with
1wo insertions and eventually two deletions for each search.

We have employed a dala structure based on k-d trees
(e.g.. Bentley [1], Bentley and Friedman [2], Overmars
and van Leeuven [12]). Each branch in the tree relies on
come discriminating dimension 2nd a pariition value. The
nonterminal nodes contains the (two) pointers 1o the sons,
the partition value, and the discriminating dimension (which
can be data-dependent); terminal nodes (named buckers)
contains data (dictionary blocks). Because we are ‘using
the wave growing heuristic, we can assume that a region
that is being maiched is always “attached” 1o the already
compressed portion of the image at its upper left comer,

" znd we use the upper left 4 x 4 subblock of the region 1o

provide the keys for the search. To find matches that are
Jess than 4 pixels in either dimension, we employ a few
additional trees, as 1o be discussed shorly.

A significant difference between our algorithm and Fried-
man, Bentley, and Finkel [7] algorithm is that we have a
bound on the allowable distortion (the distortion threshold
d) before staning the search. So, we can start a range search
for the “best” block using the distortion threshold 1o define
the range (instead of going first for some nearest neighbor
block, compute the distance r between this block and the
query block, and then do a range search backward—the

CONSTANTINESCU AND STORER: IMPROVED TECHNIQUES FOR SINGLE-PASS aDAFTIVE VECTOR QUANTIZATION mm PA@ ' 018
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ChestCAT: Cat-scan chest image, 512 by 512 pixels, 8
bits per pixel.

BrainMrSide: Magnetic resonance medica) image that
shows a side cross-section of 2 head, 256 by 256 pixels,
8 bits per pixel; this is the medical image used by Gray,
Cosman, and Riskin [GCR91).

BrainMrTop: Magnetic resonance medical image that
shows a top cross-section of a head, 256 by 256 pixels,
8 bits per pixel.

NASAS5: Band 5 of a 7-band image of Donzldsonville,
LA; the least compressible of the 7 bands by UNIX
compress.

NASA6: Band 6 of a 7-band imeage of Donaldsonville,
LA; the most compressible of the 7 bands by UNIX
compress.

WomanHat: The standard woman in the hat photo, 512
by 512 pixels, & bits per pixel.

LivingRoom: Two people in the Living room of zn cld
house with Eght coming in the window, 512 by 512 pix-
els, 8 bits per pixel.

FingerPrint: An FBI finger print image, 768 by 7€8 pix-
els, 8 bits per pixel; includes some text 2t the top.
HandWriting: The first two paragraphs znd part of
the figure of page 165 of Jmoge ond Tezt Compree.
sion (Kluwer Academic Press, Norwell, MA) written
by hand on 2 10 inch high by 7.5 inch wide piece of
gray stationary scanned at 128 pixels per inch, § bits

per pixel; zpproximately 1.2 million bytes.

Fig. 4, Descripiion of the imzges.
2 P £

so-called “bounds-overlap-ball” 1es1). If we use the rznge
{zi = d.7; + d] for each dimension 7 of the query black
z (key arez). deciding 10 go left, right. or both ways in
the k—d wree depending on how this range compares with
the panition value v; associated with the currently visited
nonterminal node. we end up by selecting 6// poieniial best
metches (2]] blocks which meel the distontion threshold on
the key arez). no matter what distorion measure we use
as Jong as it is monotonic in dimension values as wel]
as in the number of dimensions (conditions required zlso
by Friedman. Bentley, and Finkel algorithm). An example
of such a measure is the standard 12 (Euclidean) metric.
Although mean-square errar does not satisfy this condition,
it is a bit faster 10 compute (because there is no square root
10 compute) and works equally well in practice.

Let us now consider the complexity of our algorithm
when the A-d iree daia siructure is emploved. Encoding
time is bounded by

0] (_V\' - ‘\?(S(Dm;x- m) -+ Q(_,\T) =+ m))

r

where N is the number of pixels in the image, S(Dmax. )
is the maximum time 10 search a dictionary with a
‘maximum of Dy, entries each with at most m pixels,
Q(N) is the 1ime 10 insen and delete for the growing
points queue, and 7 is the amount of compression (original
size/compressed size). Swraightforward implementation of
the growing heuristics we have considered uses O(log (N))
lime by employing a heap data siruciure; however, this lime

036

GNGINAL PACE B
OF POOR QUALITY

czn be reduced 10 O(1) by implementing zl] heuristics in a
manner similar 10 FIFO. Under ideal assumptions, it ¢an be
shown that the expected time for range search in k—d trees
is O(logn + B), where B is the number of blocks found
(Bentley and Stanat [3), Friedman, Bentley, and Finkel [7)).
If we 1zke S(Dmax. m) 10 be O(Jog (Dymax)) (which from
our experiments appears 1o be a reasonzble assumption),
the improved encoding time is

O(.”\'.""r ."\"]Og (Dmu))
T

under the rezsonable assumption that m = O(Jog (Dpey ).
In many applications, it may be reasonable 1o 2ssume that
7 15 Jog (Dy..x ), which brings the encoding time down 10
O(N') time. As before. decoding is essentizlly 12ble lookup,
and czn be done in O(N) time.
Some parameters of the k~d 1ree should be adjusied by
experimentation with rezl daia or simulztion because they
refiect some compromise between time, memory space,
and retrieval quality that is generally dependent on the
zpplication domain. Afier experimenting with 2 number of
zliematives we choose 1the following senings (used for zll
the experiments reporied in this paper):
Bucker Size: Maximum 8 blocks per bucket. (We exper-
imenied with bucket sizes ranging from ] 10 32.)
Discriminating Dimension: The dimension with the
largest spread of values (computed by estimating the
variance on every dimension of the kev. for the 8 blocks
in the bucket). (We experimented with random choice, 2nd
with cyelic choice depending on the level in the 1ree).
Parrrion Value: The mean value berween 2]l of the
discriminaling dimension values in the bucket. (We ex-
perimented with random values which worked relatively
well).
Range: 1.25 »d. (Even though mean-square error does
not saiisfy 1the monolone properiies discussed earlier, by
exiending the range just a Jinle 10 [£,—1.25 ~d. z;+1.25 »d),
the retrieval quality is as good as for full search with an
insignificant increase in search time.)
Number of k—d Trees: Four irees t1.12.13. and {4, with
the following key sizes and block assignment:
t1 has 1 x 1 key and contzins blocks of size 1 x n or
nxl,withn>2
(t1 is simplyv a binary search tree).

i2 has 2 x 2 key znd contains blocks of size 2 x n or
nx 2, withn > 2.

t3 has 3 x 3 key and contains blocks of size 3 x n or
n x 3, withn > 3 and

t4 has 4 x 4 key and contzins blocks of size m x 7,
with m,n > 4,

Regarding the number of trees 1o uvse and the key
sizes, since our algorithm is “normalized” by using | x [
elementary areas (I = 4 for al] experiments reponied here),
then using 2 key of size at Jeast ! x I, no matier how “good™
a big block is on the rest. if it does not satisfy the disionion
threshold on the key area it will be rejecied 2lso by the full
search. Practically, the improvement in selectivity by using
keys bigger than 4 x 4 does not justify the increase in the
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Table 1 Comparicon of Compression Ratios for the Sume SNR PSNR; (Esch of these columns W m m

shows the same SNR ithe corresponding PSNR is shown in parentheset) the compression achieved by

our algorithm with the new irze search Caia structure, our basic full-search algorithm. and by JPEG.

“Very Good" “Good" “Fui”
Quazlity Compression Quality Compression Quality Compression
SNR 'PSNR) TREEFULLIPEG SNR (PSNR) TREEFULLJPEG SNR (PSNR) TREEFULLIPEG
ChestCAT 29 136) 4374330 22429) 8.9/8.9/4.8 18 (25) 12.8/12.7/6.7
BrainMR_Side 285139) 4.1/4.1/26 26.5 37N 4.8/4.9/6.1 20530 104/10.2/715.8
BrzinMR_Top 27435 2.8/29/24 20.5 (28.5) 5.7/5913.9 15.5123.5) 10.4/10.8/6.6
NASAS 0.2 41/22/72 28 (38.5) 5.6/5.6/5.9 26365 7.477.5/8.5
NASA6 261315 22.6/22.8/8.4 20.5 (£6.5) 74.4/80.1/647 9e8 107.8/106.5/65.1
WomnHAT 320205) 2.0/4.1734 30 ¢25) 8.6/8.8/13.7 27325 14.2/128/235
LivingRoom 312438) 39740/23 TN 7.4/7.519.1 222305 10.8/11.07123
FingerPrint 32(3%) 6.2/6.3/65 RN 26.5/26.5/27.3 22N 37.6/389/350
HandWriing 3293 17.3717.0,9.5 223255 61.0/60.1/32.0 1751185 172.0/177.0/67.3

[E]] (b)
d}.’(—/q}“ J'(“'?‘é o — . — . o -
o M ﬂ"‘“"“‘ﬁ’ﬁ _ _ e e e
2 s Cal M7,L—’.-—-——n _
(o e . D gt A _— I
W LA e — . - e —
bassndly L Frf— & A . o - -
,‘LA:—‘MJMO- — - - B .- ___:._'_ .
4 il Ma-v-/do—‘ ald 4 o .o — -"”' L. .. e e mm—
) n " a oo — —— - R :

(g} {e)

Fig. 5. (a) HandWriting original. (b)HandWriting JPEG 2t 70-to-1. {c) HandWriling at 70-10-1
using reciangles. (d) HandWriting at 70-10-] using scuares. (¢) The dictionary for Fig. 5(c). (f)

The dictionary for Fig. Sd).

tree search time. We experimented with different sirategies
of searching the forest of 4 trees but no one proved 10 be
significantly better than searching in the order: 14.43.12. 11
where the search goes from one tree 1o the other only if no
block was found.

To evzluate the performance of our algorithm. we used
the test images described in Fig. 4. For each test image.

CONSTANTINESCU AND STORER. IMPROVED TECHNIOUES FOR SINGLE-PASS

we adjusted the threshold 10 get three comj:rcsscd files,
one of very good quality, one of good quality. and one of
fair quality; the results are shown in Table 1. Although the
compression obtained is nearly identical with the basic full
search algorithm, the execution time for a 4 K dictionary
was about 60 times faster (roughly speaking, we now
use seconds rather than minutes 10 encode on a UNIX

ADAPTIVE VECTOR QUANTIZATION 937



the “activity™ in a region of the image as the ratio between
the variance (1o the mean) V and the mezn A on this
region. From experimeniation, we can say that if the ratio
A is smaller then 4%-5%, then the area is smooth and we
use a smaller distortion threshold of 0.4=d for this area;
if 5% < A < 10% we use an intermediary threshold of
0.6%d, and if 4 > 10% than the zrea is active and we use
the entire threshold d. Figure 6(2) shows our algorithm on
the WomanHat image, using a constant distortion threshold
2t 10-10-1 compression. Figure 6(b) shows the results of
the method described above at 10-10-1 compression. For
comparison, Fig. 6(c) shows JPEG at 10-to-1 compression.
Similarly, Fig. 7(2)=(c) shows the ChestCAT image using
constant distontion threshold at 10-10-1 compression, the
method described zbove at 10-10-1 compression, and JPEG
at 10-t0-1 compression. In both Figs 6(b) and 7(b). the
visual quality is much improved (especially on smooth
areas such as the shoulder in the WomanHat imzge and
the smooth pant with the "X in the ChestCAT image). By
comparison. note that in Fig. 7(c) JPEG is blocky and the
edges are not preserved: however, for WomznHat. Fig. 6(b)
and (¢) has similar visual quality.

V1. CURRENT RESEARCH

We are currently working on a number of extensions
10 the basic zpproach presented in this paper. First we
are continuing experiments 10 betier undersiand how
different heuristics affect performance in 1erms of both
speed and quality. Second, paraliel algorithms that run
in nearly O(VN) time with O(VN) processors are
possible. Third. of interest are formal proofs adcressing
compression-fdelity tradeoffs.
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Split-Merge Video Displacement Estimation

BRUNO CARPENTIERI AND JAMES A. STORER

Invited Paper

Motion Compernsation is one of 1the most effecilve techniques
used in interframe data compression. In this paper we present a
parallel block-maiching algorithm for estimating inserframe dis-
placement of blocks with minimum ervor. The algorithm is designed
for a simple parallel architecture 1o process video in real time. The
blocks may have variabie size and shape depending on a split-and-
merge technique. The algorithm performs a segmentation of the
image into regions (objects) moving in the same direction and uses
this knowledge to improve the transmission of the displacement
vectors. This segmensation identifies the part of the frame “active”
with respect to the previous frame and preserves some of the sparial
correlation between blocks.

L. INTRODUCTION

Data Compression is essential for the storage and trans-
mission of digital video, where large amounts of data
must be handled by devices with a limited bandwidth.
For example, digital High Definition Television (HDTV)
requires more than 1 billion bits per second in uncom-
pressed form. Knowledge of motion or displacement of
groups of pixels in successive frames can be the basis of
video compression algorithms and can be used in addition to
other classical single-image compression techniques, such
as transform, interpolation, and quantization algorithms, 1o
greatly reduce the amount of dets transmitted. Here we
will restrict our attention to the translational component of
the motion and refer to the algorithms that compute the
trajectory information of a pixel or a block of pixels as
displacement estimation algorithms.

Block-Matching Displacement Estimation Algorithms di-
vide a frame ino 3 number of rectangular blocks and
compute a displacement vector for each block by correlating
the block with a search area in the previous frame; see Jain
and Jain [4), Koga et al. [7), Srinivasan and Reo [9].

In this paper we present a real-time paralle]l algorithm
for displacement estimation using a two-dimensional grid
architecture and then show how the algorithm can be
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implemented on a pipe. The algorithm is based on a block-
matching approach to the problem and uses a split-and-
merge technique: the blocks (superblocks) have a variable
size that is determined at each step of the algorithm from
the previous step and the input data. In fact, the algorithm
performs a segmentation of the image into arcas moving in
the same direction and uses this knowledge to improve the
transmission of the displacement vectors of the elementary
blocks.

In the next section we outline the sequential fixed-
size block displacement estimation algorithm preseated in
Jain and Jain [4]. In Section III we present our new
algorithm, Section IV is devoted to its analysis. Section V
discusses experimental results, Section VI outlines how the
scgmentation operated by the Split-Merge technique can be
the basis of a full video coder. In Section VII we present
our conclusions.

[I. IMAGE CODING AND DISPLACEMENT ESTIMATION

In this section we review the fixed-size block displace-
ment estimation algorithm proposed by Jain and Jain [4]).
This algorithm and its assumptions have been a guideline
for more tecent work in the field, similar approaches
are taken by Koga et al. [7), Srinivasan and Rao [9),
Kappagantula and Rao [5], Puri ef al. [8], and Ghanbari
(3).

In a typical displacement estimated image coding algo-
rithm the frame is segmented into blocks. For each block
a displacement vector is computed and sent to the decoder;
moreover, the encoder computes the differeace between
the the original frame and the frame that the decoder
could reconstruct from the displacement vectors, and sends
this difference image to the decoder. All data sent from
the encoder to the decoder may eventually go through an
additional entropy coding phase.

A. Displacement Estimarion

The algorithm proposed in Jain and Jain [4] segments
an image into fixed-size small rectangular blocks, each
block assumed to be undergoing independent translation.
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If these areas are small enough, rotation. zooming. ¢ic.. of
larger objecis can be closely approximaied by piecewise
translation of these smaller areas. The goal is 10 2pproxi-
mate interframe motion by piecewise translation of one or
more areas of a frame relative 10 a reference frame. Let
U be an M x N size block of an imzge and U, be an
(M +2p) x (N +2p) size area of a reference (neighboring)
image, centered at the same spatial location as U, where p
is the maximum displacement allowed in either direction
in integer number of pixels. The algorithm requires for
each block a search of the direcrion of minimum disioriion
(DMD). i.e.. of the displacement vector that minimizes
a given distonion function. A possible mean disiortion
function between U and U, is defined in Jain and Jzin [4] as

MoOON
D)= —-1—\22 (fnon=u(ra+in<+j.

-p<ij<p

where g{z) is a given positive and increzsing disionion
funciion of r. The direction of minimum distonion is given
by (i.7). such that D(i.j) is minimum.

One problem of this zpproach is that finding optimal
displacements requires the evaluatien of D(:.j) for {(2p =
1) x {2p + 1) directions’ per block. For example, even for
motions up 10 3 pixels along either side of the zxes a
search of 121 positions per block is required. The solution
proposed in Jzin and Jzin [4] is 10 2ssume that the daia are
such that the disiortion funciion monotonically increases
as we move away {rom the DMD along any direction in
each of the four quadrants. This assumption makes possible
a search procedure for the DMD that is zn exiension in
two dimensions of the siandard loganthmic search in one
dimension (see Knuth [6]).

In the next section we present a parailel algorithm that
eliminaies the need for this assumption and which can
be implemented to run on-line on a practical pzrallel
architeciure.

1. A SPLIT-MERGE PARALLEL
BLOCK-MATCHING ALGORITHM

In this section we present a new paralle] block-maiching
2lgorithm for displacement estimation based on a split-and-
merge technique 1aking advantage of the fact that groups
of blocks often move in the same direction (for instance, if
they are part of the same object or part of the background).
The encoding algorithm computes the displacement vec-
tors (in pasallel) and sends them in compact form 10 the
decoder. The decoder receives the data and constructs an
approximate version of the image, which will be corrected
in the next siep of the general encoding algorithm.

A. The Model of Compuration

To process frames of n pixels each, the encoding zlgo-
rithm employs 2 V.V X VN grid of processors. 1 < N < n,
each having O(n/.N) local memory. Although all of what
we present is well defined when V « 7. 10 simplify our
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Fig. 1.  Displacement estimation encoder.

preseniation we shall assume V=/knforsome 0 < k<1
(and here each processor has O(1) local memory). For
decoding we will need only a single processor with O(n)
memory.

Each frame is divided into N rectangular blocks num-
bered in the same way zs the processors: we assume that
at time t processor i receives as input block ¢ from the tth
frame. Since each processor corresponds to a block, and
vice versa. from now on we will use the 1erms processor
and block interchangeably.

The encoding 2lgorithm implies the use of a sequeniial
controller 10 monitor the execution of the algorithm. The
controller will need O(N) dynamic memory and will
perform communication operzlions only with processor 1.
We will identify this coniroller with processor 1 itself
by allocating 10 this processor an additional O(NV) local
dynamic memory. The encoder compules the displacement
vectors and transmits them in 2 compact form 10 the decoder
on a serial line. Figure 1 depicts our mode] of computation.
The input frames come 10 the frame buffer on a high-speed
communication line, in 1ime proporiional 10 n. The data
flow from the frame buffer to ithe grid architecture that
performs the search of the opiimal displacement for each
block. The communication between the frame buffer and
the grid architecture has 1o be performed fast enough 1o
allow the grid 1ime 10 perform the necessary computation
on the actual frame before receiving the next frame. In
fact, the bold arrow implies that this communication should
be performed either in parallel or on a serial line with
a speed of cn/N pixels per unity of time, where ¢ is 2
sysiem-dependent constant. In Fig. 2 is shown a possible
implementation of the frame buffer: embedded into the grid.
The input is pipelined through the processors. At each step
each processor can pass the input 10 its neighbor and, when
necessary, can simultaneously copy it into its own working
memory.

B. The Encoder Algorithm

Figure 3 shows the encoder zlgorithm at time t. Each
processor at time t computes in parallel the displacement
of the block that it represents (in {rame t) with respect 1o a
search area in frame t — 1. For simplicity we assume that
the size of the search area is exacily 3 x 3 blocks, that is,
for each processor we limit the search area to its adjacent
blocks. Processor ¢ at time t keeps the description of the
block it represented at time t — 1 in the variable block{7)
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(the subscript pf is shon for “previous frame™). If at time
 — 1 a number of pairwise adjacent blocks have the same
displacement vecior, then 21 time t they are considered 10
be a well-defined superblack: superblock(i) where 7 is the
Jeader of the superbluck (the processor with minimum 1D).
If they continue 10 move together in the same direction
at time 1. just a single displacement vecior for the whole
superblock is sent from the encoder 10 the decoder. Each
processor is not aware of the shape of the superblock 10
which it belongs, but is awzre of the adjacent processors
that move in its direction (coblock). The union of coblocks
for adjacent processors that move in the same direction will
define a superblock. At each 1ime f the algorithm can be
divided into three sieps. In Phase 1 (the compute phasc)
the displacement vecior for each single block is compuled
and each processor compares ils displacement with the
displacement of the adjacent processors. Each processor 7
keeps a list of the adjacent processors that move in its same
direction: coblock(i). In Phase 3. whenever this is possible,
these lists will bs merged 1ogether ino superblocks. At
time t+1 a single displacement vector will be sent {rom the
encoder 10 the decoder for all the processors in a superblock
that still move in the same direction.

In Phase 2 (the split-and-send phase) processor 1. the
processor in the upper left comer of the grid. becomes the
controller and communicates with the others processors:
cathering information on iheir displacement veciors. de-
ciding their belonging 1o 2 superblock or the occurrence
of a split. (i.e., whereby processors leave 2 superblock
because: their motion differs from that of the majonty.
We address the complexity of this operation in the next
‘section.). Being aware of all the displacement veciors for
the N processors. the controller. for each superblock 1es1s
if splirs have occurred and consirucis the list-of-splits. i.e.,
the list that specifies which processors that were assumed
10 be pan of a superblock are no Jonger pan of 11 because
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Pheee ) (CONMPUTE

for each processor i in paraliel do:
begin
1) for every adjacent processor reighbor
do pet block g (neighbor)

2) COMPUTE (full search) its own displacemem vegor »i(i)
3) for every adjasent processor neighbor do get vifneighbor)
&) set codlock{i) = set of adjucent processors neighbor suth

. tha Vi (neighbor) =h{i]
ch

Pheee 2: (SPI1IT 20d SEND)

concolier do
begin
1) fori =_1 1w N do
get vi(i} and siore it into the record representng § in
the superblock 10 which i belongs
2) for each superblock do
begin
2.1) SPLIT the superblock imo groups of processors j

having the same displacement vesior i ()
2) let pmin be the processor with minimem ID in the larper group
2.3) il pmin is not the Jeades of the current superblock then make 8
new superblock with leader pmin and displacement veqior Vi (pmir)
2.4) add the other groups 10 list-of-splits
2.5) if pmin is not the leader of the cuTent superbloct then
delete the current superblozk
3) if lengtk (lisi-of-3plizs > T then for i =} 10N do SEND i)
else
begin
SEND lisi-of-splizs
for each superblock (i) do
SEND W (superblock (i ))
end
end

Phpee 2 l\jfB(‘.?)
congolier do
begin
) fori =110 N doget coblock (i)

2) from the cobiocks al time 1 consTuTl the new superblocks a1 time 1 =]
end

Fig. 3. The a2lgorithm at ime 1.

they are now moving in 2 different direction with respect
10 the rest of the superblock. If the length of list-of-splits is
Jess than a threshold 7. then the coniroller sends the list-
of-splits and 1he displacement veciors for the superblocks;
otherwise, it sends the displacement vectors for each single
block. The 1hreshold monitors the efficiency in terms of
amount of daia sent 10 the decoder of sending both list-of-
splits and the superblocks displacement veclors. instead of
the displacement vectors for each single block.

In Phase 3 the superblock s at time t + 1 are built
from the coblocks. The encoder and the decoder maziniain
dynamically a list of the superblocks, i.e., of which block
belongs 10 which superblock. No communication between
the encoder and the decoder is needed 10 maintain the
description of the superblocks: the decoder has encugh
information 10 compute the shape of the superblocks at lime
1. At every lime ¢ a Jist of the positions in which a split
has occurred is sent from the encoder 1o the decoder: in this
way the decoder is able 10 decode the displacement veciors
sent from the encoder.

C. The Decoder Algorithm

The decoder receives at time ¢ the information sent from
the encoder during Phase 2. It has computed at time t = 1
the superblocks at time t and therefore it can assign 10
each block the correspondent displacement veclor. Finally,
it has enough information to compute which blocks will be
in which superblocks at 1ime t + 1. The decoder is not a
paralle] machine: one single processor suffices 1o perform
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the necessary operations. The decoder uses O(.V) memory
10 decode each frame in O(.N) time.

D. Splits end Displacement Veciors

One of the critical poinis of the algorithm is 1the commu-
nication from the encoder 10 the decoder of the lisi-of-splizs,
i.e., of the list of the processors that at time ¢ belonged to
a superblock but no longer do, and of their displacement
vectors. There are two requirements that the /isr-of-splits
must satisfy: it must be computationally easy 10 build. and
it must have a concise encoding; otherwise, sending only
one displacement vector for each superblock would not be
convenient because of the necessity of sending also the
list-of-splizs.

The list-of-splits is dynamically built: In line 2.4 of Phase
2. groups of processors are added 10 the list. a single
displacement vector per each group. We keep a hach 12ble
of the possible displacement veciors: each time a group
is added 10 the list we compute the hash value of its
displacement vector and we associzie 10 the corresponding
entry in the table this displacement vecier and ithe list
of the processors in the group. This list begins with the
ID of the smaller processor, then the ID's of the other
processors {ollow. each coded in ierms of the displacement
with respect 10 the previous one. Because the processors
were part of the same superblock and are still moving in the
same direction, we can expect their ID numbers 10 be very
close and we can get good compression with this simple
heuristic. When the encoder sends the /isz-of-spliss. it sends
each nonzero entry in the tzble.

There might be more than one solution 1o the compusation
in Line 2 of Phase }. The block examined could match
optimally more than one block in the search area. or else
we may want 10 consider in the next Phase more than
one direction in which the block can move. in such a
way 10 have more options when it is time to shzpe the
superblocks. A way o do this is 10 save for each block
all the displacement veciors that zllow zn error less than a
threshold ¢ when the block is meiched in the search zrea.
In this case. in line | of Phase 2, the processor sends 10
the controller not only a single vecior but a list of possible
vectors.

To determine the eventuality of 2 splir. in line 2.1 of Phase
2, the controlier shall compuie in which of the possible
directions the majority of the processors move. The number
of possible directions is finite and the computaiion can
be limited in advance by limiting the length of each list
of possible vectors 10 an appropriately chosen constant
L. Phase 3 is not affected by considering more than
one displacement value per vector in Phase 2: 2 single
displacement vector per block has been sént in Phase 2,
and now only that vector has 10 be considered in Phase 3.

E. Implementation on a Pipe

Figure 4 shows how the algorithm can be implemented
on a pipe. The inputs 10 the pipe are the actual frame and
the previous frame reconstructed by the decoder. The input
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Fig. 4. Implementziicn of the algonihm on a pipe architeciure.

flows in linear time through zll the processors. Each proces-
sor has 10 construct the search area by using the information
from the previous frame: afier O(.V) time every processor
has available both the block it is representing at the current
time and the search zrea in the previous frame.

The computation involved and the details of the zlgorithm
are analog to the grid implemeniation.

IV, ANALYSIS OF THE ALGORITHM

In this section we analyvze the encoder algorithm in terms
of complexity. fidelitv. and compression. The analysis is
done for the grid implemeniation. similar arguments hold
for the pipe impiementation.

A. Complexiry

Let N be the number of processors in the grid, where
N =iknfor0 < &k < 1.In Phase ] lines 1 and 3 involve
direct neighbor communication and take constant time. The
compuiation involved in line 2 is the most expensive part of
Phase 1, but it still 1akes consiant time. where the constant
depends on the size of the search area. The £or loop inline
1 of Phase 2 might seem to involve O(N?) communication
on a grid architecture: processor 1 has 1o interact with all
the other processors. If we number the blocks by row and
column this £cx loop can be easily pipelined as showed in
Fig. 5. Therefore, processor 1 will always interact at each
iteration of the loop with an adjacent processor: processor
2, and the loop will 1zke O(N) tme. The complexity
of line 2 (2.1-2.5) depends on the number of processor
ID's examined. The superblocks are pairwise-disjoint sets;
therefore, line 2 has a time complexity of O(N). Line 3
involves 2lso O(N) time.

The fcr loop of line 1 of Phase 3 can be pipelined and
1zakes O(.N). For each vector the coblocks have a constant
size (each processor has at most eight neighbors), therefore,
line 2 has time complexity O(N).

In fact, the whole algorithm has at each step t a time
complexity O(.N) = O(kn), i.e., linear in the size of the
input, it is an on-line algonthm.
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Fig. 5.  Pipelining.

Each processor, with the exception of the controller.
needs a constant amount of memory. The controller needs
O(N) dynamic memory 1o represent the superblocks and
10 store the coblocks end the displacement veciors.

B. Fideliry

The displacement veciors computed by our zlgorithm are
at least as accurale and generally more than ithose computed
by the sequential zlgorithm: we do not assume any a priori
hypothesis 10 simplify the search, rather we search 2ll the
possible directions.

C. Compression

The amount of data sent from the encoder 10 the decoder
in our algorithm is in the worst czse equal 10 the amount
sent by the fixed-size block algorithm. but the zlgorithm
has the possibility 10 transmil much less &zia.

The size of the blocks is chosen in such 2 way 2§ 10
zpproximate different movements of an object by piecewise
ranslation of the blocks themselves. An object may be
composed of a large number of biocks, all of which move
in the same direction. even in the czse when the molion
in the sequence is due 10 a movement of the camera. If
neighboring objects move in the same direction with the
same speed. they will belong 10 the same superblock. In
fact, a simple but imporiant case is when large groups of
pixels comprise “Background™ scenery that sizys relaively
constant from one {rame 10 the next

The superblocks will generally consist of many proces-
sors, the length of the lisi-of-splits will be negligible with
respect 10 the cardinality of ihe superblocks, and at each
time 1 a sensible reduction in size of the caia sent from
the encoder 10 the decoder is expected. However, when the
length of the Jisi-of-spiiis becomes bigger than the threshold
7. the controller acts as in the fixed-size algorithm and sends
10 the decoder one displacement vecior per black, siariing
from 7 (1) to ¥ {n). instiead of sending lisi-of-splits and
the displacement vectors for the superblocks. In this way.
it sends the same amount of data that the zlgorithm in Jain

o ONIGINAL PAGE 1B
OF POOR QUALITY

Fig. 6.  First and last frame of the sequence “Salesman.”

Fig. 7.  First 2nd last frame of the sequence “Fog.”

Fig. 8. First and last frame of the sequence “Kids.”

Fig. 10.  Firsi and last frame of the sequence “Pusiorale.”

znd Jain [4) would have sent. The decoder can infer that the
displacement vectors received refer 1o the blocks. and not
10 the superblocks, from the number of veciors received.

V. EXPERIMENTAL RESULTS

We have performed experiments with the following data
set (Figs. 610 show the first and the last frame of each
of these sequences):

Salesman

This sequence is one of the siandard test sequences in
video compression. It is currently available for anonymous
fip at ipl.rpi.edu and consisis of 448 frames, 360 x 288, 8
bits per pixel. ]t conuins relatively linle dewsil or motion,
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tvpical of the head and shoulae, sequences common in
video-telephone applicztions.

Fog

From the motion picrure “Caszblanca,” the final scene
when Humphrey Bogart and Ingrid Bergman say good-bye
in the fog at the airport. This sequence is composed of 60
frames, 152 x 114, 8 bits per pixel, digitized at a rate of
12 frames per second. There is a considerable amount of
noisy movement due 10 the foggy background.

Kids

From the motion picture “It's a Wonderful Life,” it is
one of the first scenes, where kids (the main characiers as
children) are siting at a desk. This sequence is composed
of 100 frames. 132 x 114, 8 bits per pixel, digitized at
a rate of 12 frames per second. There is a fzir amousnt of
movement due 10 the presence of three characiers.

Mountains

From the motion picture “The Sound of Music.” one of
the final scenes. where the main characters are walking in
the mountains. This sequence is composed of 60 frzames,
132 x 114, 8 bits per pixel. digitized 2t a rate of 12
frames per second. The scene involve 2 noticezble amount
of movement.

Pasiorale

From the motion picture “Fantzsia.” 2 scene from the pzan
of the movie illusirating Beethoven's 6th Syimphony. This
sequence is composed of 60 frames, 152 x 114, 8 bits per
pixel. digitized at a rate of 12 frames per second.

We define, as usually. the SNR correlation (in decibels),
berween two frames X and Y. of dimension M x N zs

S (XGE?
i<H N

SOXGEG)-Y@E?

i<hM <N

SNR(X.Y) =10 x log,g

To describe the amount of movement present in each of
the test sequences, Fig. 11 presems for each sequence the
SNR correlation between pair of consecutive frames. On the
Y axis we plot the SNR correlation, in decibels, between
a frame and the previous one, on the X axis the frame
number. We can see, for example, that in the sequence
“Kids™ and in the sequence “Mountains™ (Fig. 11(c), (d))
there is at first a higher amount of movement (the first 20
frames of “Kids” and the first 30 of “"Mountains™), and then
a lower amount of motion. Therefore, the graphs show very
low points for the first part of the sequence and then a brisk
increase and a smoother behavior. In the sequence “Kids,”
this is due to the fact that in the first 20 frames the blonde
girl moves from the left comer of the picture and sits down
at the desk while the boy gets closer, then in the rest of the
sequence the 1wo girls and the boy move slightly and chat.
In the sequence “Mountains,” a1 the beginning people are
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Fig. 12.  Compzrison with the sianczrd full search, fixed-size

block, algorithm.

walking fast 1o the 1op of the hill but at the end they slow
down and turn 10 the mountains.

Figure 12 shows, in a 1able, the results we have ob-
1ained comparing our algorithm 1o the standard full search
azlgorithm. The first column of the table identifies the
sequence, the second column repornts for each sequence
the average SNR (in decibels) berween conseculive frames
as a measure of their correlation. The third zand fourth
columns present the results of the comparison between the
fuil search algorithm and the Split-Merge algorithm for the
1est sequences. We have run the full search algorithm with
block size 8 (8 pixels by 8 pixels blocks) and block size
4 (4 pixels by 4 pixels blocks) and we have reported in
the first subcolumns of the third and fourth columns the
average SNR berween the original frames and the prediction
obtained. Then we have run our algorithm serting the
parzmeters in such a way 10 achieve that same average SNR
and in the second subcolumns we have compared the size
of the predictions, i.e., the number of bytes needed 10 send
the prediction from the encoder to the decoder assuming no
lossless compression is performed.

As can be seen in Fig. 12, for the same SNR, our
algorithm has in general a noticeable saving in size respect
to the full search algorithm. In the sequence “Fog™ the
foggy background produces noisy effects on the segmenta-
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Fig. 13.  Sequence “Kids,” comparison of Full Search block size
8 (2) 2nd Split Merge initia block size 4 (b). .\ = frame number,
Y = SNR (dB).

Fig. 14.  Segmeniation of the {rames “Szijesman™ 100. 200, 300,
£27 ino superblocks. ihe initial block size is 4.

tion performed by the Split-Merge algonithm. those effects
are panicularly relevant when we use 2 very smeall initiel
block size (2 pixels by 2 pixels). This is why the Split-
Merge algorithm outperforms the full search algorithm in
all experiments but in the case of the sequence “Fog™ and
initial blocksize 2.

While our anzlysis has been done in 1erms of average
SXNR. it is true that the algomthm performs egually well
on a frame-by-frame basis with respect 10 the full search
algorithm. For example, for the sequence “Kids.” Fig. 13
shows the SNR vzlues, {rame by frame. obiained by the
full search algorithm. with block size 8, and the values
obtained by the Split-Merge zlgorithm with initial block
size 4 and pzramelers set 10 achieve the same zverage
SNR as the full search zlgorithm. This is true zlso for il
the other sequences tesied. On a frame-by-frame basis, the
Split-Merge zlgorithm behaves almost exacily like the full
search algorithm.

V1. SpLITS AND VIDEO CODING

This 1echnique suggesis a compleie video compression
algorithm based on the different levels of action that are
generally present in a video scene, identified as “splits™ and
“superblocks.™ In fact. the segmentation of the frames inio
superblocks and splits can be the kernel of a complete video
compression sysiem. The Jocations of the splits identify the
parts of the frame “active™ with respect 10 the previous
frame while the segmeniation into superblocks preserves

026 ORIGINAL PAGE @B

some of the spatial correlation beiween blocks and avoids
some “squaring” effects in the predicied frame,

In Carpentieri and Storer {2) we have presenied a video
coder based on this Split-Merge displacement estimation
1echnique. The video coder uses the splits and superblocks
information 1o improve the error correction module: two
different thresholds are used to determine if a block needs
10 be corrected, depending on the block being a split or
belonging 10 2 superblock: this would not be possible by
using the fixed block displacement estimation zlgorithm
which has no notion of spatial correlation between blocks
or of active pans of the frame.

Figure 14 shows a segmentation of four frames from the
sequence “Salesman,” into superblocks; the initial block
size is 8. Blocks belonging 1o the same superblock have
the same tone of gray. The splits are depicted by blocks
having aliernziing sequences of black and white pixels.

Tne splits in Fig. 14 corvespond 1o the parts of the scene
that are active in the transition between the previous frame
end the actual frame. In fact they are concentraied in the
portion of the picture relative to the head of the szlesman,
10 his right hand, and 10 the object in his hand.

VI, CONCLUSION

We have presenied 2 new on-line parallel z2lgorithm for
displacement estimation based on the block-matching ap-
prozch, as well 25 an on-line paralle] implementation of this
zlgorithm. At each tirne 7 both the decoder and the encoder
have 2vajlable the description of the superblocks compuied
at ume t — 1. Each superblock is a set of contiguous
blocks that move in the same direction. The panition of
the imzge into superbloclks corresponds 10 an approximaite
segmentation of the imzge into zreas (objects) that move
in 1he same direction. The quality of the approximation
depends on the granularity chosen (i.e., the size of the
blocks and the senting of the internal parameters). Our
zlgorithm uses this knowledge of the segmentation of the
frames 10 opiimize the iransmission of the displacemem
VEC1ors.

Segmenting frames into superblocks preserves the spatial
correlation between the blocks in the superblock. This may
improve the visual quality of the prediciion. Because the
splits represent blocks that are in a certain sense “new”
with respect to the previous frame, a different degree of
corTection accuracy can be used for blocks that are splits.
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